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Abstract. We reinvestigate Kreimer’s Hopf algebra structure of perturbative quantum field theories with
a special emphasis on overlapping divergences. Kreimer first disentangles overlapping divergences into a
linear combination of disjoint and nested ones and then tackles that linear combination by the Hopf algebra
operations. We present a formulation where the Hopf algebra operations are directly defined on any type of
divergence. We explain the precise relation to Kreimer’s Hopf algebra and obtain thereby a characterization
of their primitive elements.

1 Introduction

This paper is the result of our efforts to understand the
article by Dirk Kreimer on the Hopf algebra structure of
perturbative quantum field theories [1]. That article was
brought to our attention by Alain Connes in his talk dur-
ing the Vietri conference on noncommutative geometry.
Kreimer discovered that divergent Feynman graphs can
be understood as elements of a Hopf algebra. The forest
formula guiding the renormalization of Feynman graphs
with subdivergences is reproduced by a certain interplay of
product, coproduct, antipode and counit of that Hopf al-
gebra. Meanwhile Connes and Kreimer elaborated a deep
structural link [2] between that Hopf algebra of renormal-
ization and the Hopf algebra emerging in the computation
of the local index formula for transverse hypoelliptic op-
erators [3]. This indicates that renormalization provides a
mathematical calculus that can be thought of as a refine-
ment of diffeomorphisms.

As explained by Kreimer in [1,2,4] and in private dis-
cussions, overlapping divergences require a special treat-
ment. Overlapping divergences must first be disentangled
into a linear combination of terms containing disjoint or
nested divergences exclusively. Suppose the (divergent) in-
tegrand I(q1, . . . , qn) corresponding to a Feynman graph
depends on n external parameters (masses and momenta)
qi, . . . , qn. The idea is to write

I(q1, q2, . . . , qn) = {I(q1, q2, . . . , qn) − I(q1, 0, . . . , 0)}
+I(q1, 0, . . . , 0) .
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The integrand {I(q1, q2, . . . , qn) − I(q1, 0, . . . , 0)} is less
divergent, in the optimal case convergent or without sub-
divergences. It is therefore sufficient to consider integrands
depending on a single scale q. In the same way as above
one can write I(q) = {I(q) − I ′(q)} + I(q), where I ′(q)
is derived from I(q) by nullifying q in some parts of I(q).
It was shown in [5] that by this procedure (which is en-
coded in the Schwinger-Dyson equation) it is always possi-
ble to disentangle overlapping divergences. Hence one can
restrict the operations of the Hopf algebra to terms con-
taining no overlapping divergences. The forest formula is
trivial in this case, it simply says that the subdivergences
must be compensated in ascending order.

In this paper we present our independent approach
to the problem of overlapping divergences. Our goal is
to treat overlapping divergences on the same footing with
disjoint and nested ones so that the operations of the Hopf
algebra are directly defined on any Feynman graph. We
show that this aim can be achieved by endowing Kreimer’s
parenthesized words (PW) describing the Feynman graphs
with additional information. In our formulation, a PW is
a collection of all maximal forests of a Feynman graph,
where identical regions in various forests are visualized.
We show that one of the antipode axioms recovers the for-
est formula in its full beauty for any Feynman graph. Fol-
lowing an idea by Dirk Kreimer [2,4] we describe the pre-
cise relation between his and our formulations of the Hopf
algebra of renormalization. In this way we gain an explicit
construction of those primitive elements of Kreimer’s Hopf
algebra which are different from the graphically primitive
elements.

Our paper is organized as follows: We introduce in
Sect. 2 our extended PWs and discuss in Sect. 4 the R-
operation of renormalization. The Hopf algebra is identi-
fied in Sect. 5, where longer proofs are delegated to the
appendix. In Sect. 6 we discuss the relation to the Hopf al-
gebra of Kreimer. In Sects. 3 and 7 we apply our methods
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(3)

(4)

to examples of Feynman graphs with overlapping diver-
gences.

2 Feynman graphs, maximal forests
and parenthesized words

Let Γ be a Feynman graph. In the way described by
Kreimer we draw boxes around superficially (UV-) diver-
gent sectors of Γ :

= (((s1)(v2)v4)(p3)v5)

(1)
(As usual, straight lines stand for fermions and wavy lines
for bosons.) A superficially divergent sector [6] is neces-
sarily a region of Γ which contains loops. The boxes must
be drawn in such a way that no vertex of Γ is situated on
the border of the box and no line of Γ is tangential to the
border. Boxes can be deformed. During the deformation,
no vertex is allowed to pass the border and at no time a
line may be tangent to the border of the box. We consider
boxes which differ by a deformation as identical.

We shall work in four dimensional spacetime, but gen-
eralization is obvious. A criterion for superficial diver-
gence of a region confined in a box is power counting.
The box under consideration will contain nB bosonic and
nF fermionic external legs. Ghosts are regarded as bosons
here. In a renormalizable theory there can only be a su-
perficial (ultraviolet) divergence in the box if it contains
at least one loop and if the power counting degree of di-
vergence dpc satisfies

dpc := 4 − nB − (3/2)nF ≥ 0 . (2)

Owing to symmetries the actual degree of divergence d of
one graph or a sum of graphs can be lower than dpc calcu-
lated from (2), see [6]. Examples are graphs in QED with

nB = 3, nF = 0 (which can be omitted due to Furry’s the-
orem) and with nB = 4, nF = 0 (which are superficially
convergent due to gauge symmetry). Always if d < 0 the
box must be erased. This does not mean that there can-
not be divergences in the box to erase. But these non-
superficial divergences must be contained in other boxes
which cannot be deformed into the box we erased.

Our boxes represent the forest structure of Γ . A for-
est is a set of 1PI (one-particle-irreducible, i.e. the graph
remains connected after cutting an arbitrary line) diver-
gent subgraphs γ ⊂ Γ which do not overlap. Instead, any
two elements (= boxes) of a forest are either disjoint or
nested. The forest structure is the collection of the max-
imal forests of Γ , i.e. the forests which are not contained
in another forest. There are several maximal forests in
general to a Feynman graph.

Kreimer defines [1] a recursive procedure to assign
parenthesized words (PW) to the boxes of a maximal for-
est. The total graph Γ stands for a certain integrand IΓ

depending on external and internal momenta. A box is
represented by a pair of opening-closing parentheses. Two
nested boxes are represented by (( ) ) and two disjoint
boxes by ( )( ). In an irreducible PW (iPW), the leftmost
opening parenthesis matches its rightmost closing paren-
thesis. A primitive box contains no nested boxes and rep-
resents a graph γ without subdivergences. Examples of
primitive boxes ( ) are (see (3) on top of the page).
(The reader is encouraged to verify using (2) that the last
three examples contain no divergent subgraphs.) We asso-
ciate the integrand Iγ defined by the vertices and propa-
gators of γ to such a primitive box and write the PW (Iγ).
A non-primitive box contains nested boxes. It describes a
graph γ with subdivergences γi, which are already charac-
terized by PWs Xi. Examples for graphs with one nested
subdivergence (( ) ) are (see (4) on top of the page).

Examples for graphs with two disjoint nested subdi-
vergences: (( )( ) ) are (see (5) on top of the next page).
And here are two examples for graphs with a nested subdi-
vergence which has itself a nested subsubdivergence
((( ) ) ):

(6)
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(5)

(((s1)(v2)v4)(p3)v5) = (7)

If we shrink all nested boxes (=divergent subgraphs γi)
of γ to points, there remains a fraction Iγ/∪γi

of the in-
tegrand of γ defined by the vertices and propagators of
γ/∪γi. The latter should be regarded as a Feynman graph
with holes at the places where the subgraphs γi had been
before. We agree that for self-energy insertions γi splitting
propagators into two, one of the new propagators belongs
to the subgraph γi. In this way we keep the number of
possible holes in a Feynman graph finite. We write the
fraction Iγ/∪γi

next to the right closing parenthesis and
everything we have shrunk to a point (the Xi) between
that fraction and the left opening parenthesis. The result-
ing PW looks like this:

(
X1 . . . Xn Iγ/{γ1∪...∪γn}

)
. Note

that the order of disjoint boxes is irrelevant. For instance,
the PW of the example (1) (considered as 1PI) looks as
given in (7) (see (7) on top of the page).
A slash through a propagator means amputation and a
small circle symbolizes a hole. We see that our building
blocks are the Feynman graphs with possible holes at any
vertex and in any propagator.

By this procedure we associate a PW to each maximal
forest. As discovered by Kreimer [1], the PWs form a Hopf
algebra whose antipode axiom reproduces the forest for-
mula [7]. This assumes that overlapping divergences such
as

(8)

have been disentangled into a linear combination of PWs
containing disjoint and nested divergences exclusively, for
instance via the Schwinger-Dyson equation, see [1,5]. The
outcome is thus a linear combination of PWs each of them
describing a maximal forest, and the forest formula is re-
duced to a rather trivial prescription.

The goal of this paper is to modify the PWs and the
Hopf algebra operations in such a way that any
1PI-Feynman graph is described by a single PW and that
all Hopf algebra operations are defined on such a PW. Our
starting point is the observation that in the case of over-
lapping divergences there exist several maximal forests to
a Feynman graph. It is clear that democracy requires to
comprise all PWs associated to these maximal forests to
one bigger object. We propose to build a column vector
whose components are the PWs of maximal forests. The
order of the components (or rows as they are long objects)

of this vector is not relevant, of course. As the integrands
associated to the PWs of each row are equal, we associate
this universal integrand to our column vector.

There is one further modification necessary. Later on
we are going to identify the subwords of such a vector
and define the removal of subwords. Subwords represent
subgraphs and the removal means replacing the subgraph
by a hole. But subgraphs or subwords can occur identi-
cally in various maximal forests. If we now compare the
maximal forests of a graph with removed subgraph and
the maximal forests of the original graph, it is easy to see
that the subgraph is removed in all maximal forests it had
occurred. (An example is the step from (11) to (9) in the
next section by cutting out loop 3.) We must implement
this feature in our vectors. We propose to connect by a tree
of lines the closing parentheses of identical and simultane-
ously shrinkable boxes. If we pull out a subword of such a
vector and if the subword is connected over various rows,
we simply have to remove all of them.

Thus, our PWs are vectors of one-line-PWs represent-
ing the maximal forests of a Feynman graph, where the
closing parentheses of simultaneously shrinkable boxes are
connected. We define now the notion of a parenthesized
subword (PSW) of a PW. A PSW Y of X is everything
between a set of connected closing parentheses and its
matching opening parentheses. Disconnected rows of X
which are accidentally between connected rows are not
part of the PSW Y under consideration.

There is an algorithm which yields all PSW of a PW.
Starting with the first row we run from the left through
the PW until we meet a closing parenthesis. In general, it
will be connected with other closing parentheses in differ-
ent rows. These connected closing parentheses and their
matching opening parentheses define our first PSW. We
mark all these connected closing parentheses. We then go
ahead and move through the first row until we arrive at
the next closing parenthesis. This gives the next PSW and
marks the next set of parentheses. We repeat this proce-
dure until the rightmost closing parenthesis is reached.
Then we pass to the second row and continue to search
for new closing parentheses and related PSW, i.e. we ig-
nore all parentheses marked in the previous steps. This
search continues through all rows and stops at the lower
right corner of our PW.

In what follows we will freely use the notions parenthe-
sized word (PW), irreducible PW (iPW, the leftmost and
rightmost parentheses match), primitive PW (no nested
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divergences, a special iPW) and parenthesized subword
(PSW, a special iPW). We remark that a possible exten-
sion could be the inclusion of superficially convergent 1PI-
graphs (d < 0) with subdivergences. All finite integrands
fuse and stand immediately before the rightmost closing
parentheses.

We will give now some examples for Feynman graphs
with overlapping divergences which are represented by
parenthesized words of several maximal forests. The PSW
of some of these examples are discussed and further eval-
uated in Sect. 7.

3 Examples for Feynman graphs
with several maximal forests

In QED there is the following contribution to the photon
propagator:

((v1)p2)
((v2)p1)

(9)

We can draw two maximal forests of boxes. We can first
draw a box around the left loop which contains the vertex
correction with interior momentum k1. Then we put this
box into the large box which encircles both loops. Or we
can first enclose the right loop by a vertex box and then
put everything into the same large box. Graphically, the
two possibilities look like this:

= ((v1)p2) or

= ((v2)p1) .

(10)

In the first case, the innermost box is the primitive box
(v1) the integrand of which is – in the Feynman gauge –
given by

vµB
1A =

[
eγκ k/1+µ

k2
1−µ2 eγµ k/1+p/+µ

(k1+p)2−µ2 eγκ
1

(k1−k2)2−M2

]B

A

=

Here, e is the electron charge, µ is the electron mass and
M an auxiliary photon mass to avoid IR-divergences. Cap-
ital roman letters label Clifford indices and greek letters

Lorentz indices. This vertex box is nested in the large box,
so we must write ((v1)p2) as the maximal forest. The in-
tegrand p2 is the interior of the large box after shrinking
the small box (v1) to a hole. What remains is loop 2 and
the integrand is found to be

pνA
2B=

[
k/2+p/+µ

(k2+p)2−µ2 eγν k/2+µ
k2
2−µ2

]A

B

=

In the second case the loops 1 and 2 change their role and
we obtain the maximal forest ((v2)p1) with

vνA
2B =

[
eγκ

k/2+p/+µ

(k2+p)2−µ2 eγν k/2+µ
k2
2−µ2 eγκ 1

(k2−k1)2−M2

]A

B
,

pµB
1A =

[
k/1+µ
k2
1−µ2 eγµ k/1+p/+µ

(k1+p)2−µ2

]B

A
.

We have found two maximal forests ((v1)p2) and ((v2)p1)
in this example. These two forests form the 2-line vector
((v1)p2)
((v2)p1). However, the large box occurs identically in both

maximal forests. We cannot shrink it in one of them and
keep it in the other. Therefore, the closing parentheses
representing the large box in both rows of the vector must
be connected, as we have already indicated in (9).

Here is a graph with two maximal forests containing a
nested divergence:

(((v3) v13)p2)
(((v3) v23)p1)

(11)

The vertex correction v3 is nested in both vertex cor-
rections vi3 comprising the common loop 3 and loop i.
The subword (v3) is identical in both maximal forests
(((v3)v13)p2) and (((v3)(v23)p1). If we shrink it in one of
them it is automatically removed in the other one. For the
same reasons both maximal forests are connected at the
outermost box.

Here is now a more complicated forest structure:

( (v1) (v2) p3)
(((v1) v13)p2)
(( (v2) v23)p1)

(12)

We have three possibilities for drawing disjoint boxes: We
can take loops 1 and 2 and put them into the large box, or
we can put loop 1 into the vertex box which covers loops
1 and 3 and then everything into the large box, or we can
exchange the role of loops 1 and 2.
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Let us also give an example from φ4-theory. There is
the following second-order correction to the propagator:

((x23)y1)
((x31)y2)
((x12)y3)

(13)

Here, xij is the vertex correction involving the lines
i, j and yk the tadpole graph involving the line k.
The three maximal forests are connected because shrink-
ing one of them to a hole forces the reduction of the other
two.

4 Kreimer’s R-operation [1]

To any PW X, Kreimer associates a second, in a certain
sense equivalent copy R[X]. The philosophy is that R[X]
is a local counterterm, a point-like interaction. It is so to
say a new vertex, mass or kinetic term in the Lagrangian,
which itself is infinite but such that a certain combination
of counterterms and divergent 1PI graphs is finite. The
finite linear combination in question is given by the forest
formula or – as discovered by Kreimer – by the antipode
axiom of a (quasi-) Hopf algebra to construct. For renor-
malizability it is essential that all counterterms can be
absorbed by a redefinition of physical parameters of the
theory. In particular in gauge theories there are potentially
more types of counterterms than physical parameters [6].
It is important then that counterterms and divergences
of the sum of all graphs contributing to a certain ampli-
tude cancel. We avoid a discussion of these subtleties by
considering scalar theories or – with some care – QED.

The R-operation depends on the renormalization
scheme, which in principle is arbitrary but fixed through-
out the investigation. We shall work in the BPHZ scheme
[8,9,7] which is the standard one in connection with the
forest formula. A iPW X represents one box containing a
divergent Feynman graph with in general several forests of
subdivergences. The box has nB bosonic and nF fermionic
external legs. The superficial degree of divergence d[X] of
the iPW X is bounded by the power counting theorem (2),
d[X] ≤ 4−nB− 3

2nF . In the BPHZ scheme the integrand
R[X] is the Taylor expansion until order d[X] with respect
to the external momenta of X. We call X =

∏
i Xi a tree

if each Xj ⊂ X has a common momentum variable with
at least one Xi ⊂ X, i 6= j. In this case we define R[X] to
be the Taylor expansion with respect to the external mo-
menta of the smallest possible iPW X̃ containing all Xi as
subwords. Finally, for X being a product of disjoint trees
Xt, we define R[

∏
Xt] =

∏
R[Xt]. Note that in general

X − R[X] is an integrand yielding a finite integral only if
X is a primitive PW without subdivergences.

To give an example, consider the divergent Feynman
graph with subdivergence given in (14).

= = ((v1)v2) ,

vµC
1B =

[
eγν k/1+µ

k2
1−µ2 eγµ k/1+(p/1−p/2+k/2)−k/2+µ

(k1+(p1−p2+k2)−k2)2−µ2

×eγν
1

(k1−k2)2−M2

]C

B
,

vBD
2AC =

[
eγκ k/2+µ

k2
2−µ2

]B

A

×
[

p/1−p/2+k/2+µ

(p1−p2+k)2−µ2 eγκ
1

(k2−p2)2−M2

]D

C
.

(14)

We have written v1 in a form where its external mo-
menta p1−p2+k2 and k2 are explicit. The two subwords
of ((v1)v2) are clearly (v1) and ((v1)v2). Let us compute
R[(v1)]. It has 2 fermionic and 1 bosonic external legs,
hence d[(v1)] ≤ 0, and actually d[(v1)] = 0. In the BPHZ
scheme we take the Taylor expansion of (v1) in its external
momenta p1−p2+k2 and k2 until order 0. This gives

R[(v1)] = vµC
1B

∣∣
p1−p2+k2=k2=0

=
[
eγν k/1+µ

k2
1−µ2 eγµ k/1+µ

k2
1−µ2 eγν

1
k2
1−M2

]C

B

= (15)

We see that R[(v1)] defines a local counterterm, and the
integral

∫
d4k1 {(v1) − R[(v1)]} is finite.

We can now apply the R-operation to the PWs ((v1)v2)
and R[(v1)](v2). In both cases this means Taylor expansion
with respect to the external momenta p1, p2 of ((v1)v2)
until degree d[((v1)v2)] = 0, because R[(v1)] and (v2) have
common momenta p1, p2, k2. We obtain

R[R[(v1)](v2)]=

× (16a)
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=
[
eγν k/1+µ

k2
1−µ2 eγµ k/1+µ

k2
1−µ2 eγν

1
k2
1−M2

]C

B

×
[
eγκ k/2+µ

k2
2−µ2

]B

A

[
k/2+µ
k2
2−µ2 eγκ

1
k2
2−M2

]D

C
,

R[((v1)v2)] =

=
[
eγκ k/2+µ

k2
2−µ2 eγν k/1+µ

k2
1−µ2 eγµ k/1+µ

k2
1−µ2

×eγν
1

(k1−k2)2−M2 ×

× k/2+µ
k2−µ2 eγκ

1
k2
2−M2

]D

A
. (16b)

Both R[R[(v1)](v2)] and R[((v1)v2)] define local counter-
terms, but both integrals

∫
d4k2d

4k1 {((v1)v2)
−R[((v1)v2)]} and

∫
d4k2d

4k1 {((v1)v2) − R[R[(v1)](v2)]}
are infinite. To obtain a finite expression one has to in-
clude R[(v1)](v2) in a way given by the forest formula.

We must say a few words how equivalence is defined
quantitatively. Renormalization schemes depend on some
regularization parameter ε. Infinities correspond to pole
terms in ε. In terms of ε, Kreimer gives the following def-
inition of equivalence:

X ∼ Y iff lim
h̄→0,ε→0

{X − Y } = 0 . (17)

Accordingly, R is a renormalization map iff R[X] ∼ X for
all PWs X. It is important to understand that R[X] ∼ X
does not imply R[X]Y ∼ XY . The reason is that if Y
has pole terms in ε then in the product (R[X]−X)Y also
terms of order ε in R[X]−Y become essential. It turns out
that the full set of properties of a Hopf algebra can only be
guaranteed if equivalence works for products, in a certain
sense. The precise condition to the the renormalization
map R is

R
[∏

i

R[Xi]
∏
j

Yj

]
=

∏
i

R[Xi]
∏
j

R[Yj ] . (18)

We indicate by X ≈ Y that under the condition (18)
we have X ∼ Y , but that in general equivalence is not
guaranteed.

In the BPHZ scheme there is no regularization param-
eter ε, so we cannot use the definition (17). Nevertheless,
R is defined for any Feynman graph, and we say that
X ∼ Y iff Y = X or Y = R[X]. The condition (18) makes
sense, and we have R2 = R by construction. We remark
that superficially convergent graphs with subdivergences
(if included, see the remark at the end of Sect. 2) are an-
nihilated by R. This is clear in the BPHZ scheme, because
a Taylor expansion until order d < 0 makes no sense. In
what follows we work on a general level without specifying
the renormalization scheme and its R-operation.

5 The Hopf algebra

Following the work of Kreimer [1] we will now equip the
PWs with the structure of a (quasi-) Hopf algebra. This
goes in four steps. First, we would like to consider the
set A of all PWs (which include from now on its R-equi-
valents) as a vector space. We enlarge formally this set A
by all rational linear combinations of PWs. This makes
A to a formal vector space over the field Q of rational
numbers, Q just for simplicity.

The second step makes A to an algebra by defining a
product m. This is an operation which assigns to a sum
of pairs of elements of A a new one. Actually only Q-
equivalence classes of pairs are essential so that m operates
on the tensor product, m : A ⊗ A → A. According to [1]
we build the commutative and associative formal product

m[X ⊗ Y ] = XY = Y X , X, Y ∈ A ,

corresponding to two disjoint divergences. We further de-
fine a formal unit e by

m[e ⊗ X] = m[X ⊗ e] = X ∀ X ∈ A .

The unit e is not considered as a PSW. It is convenient to
consider e as produced by an operation

E : Q → A , E(q) = qe .

The third step is to make A to a coalgebra. The opera-
tions of a coalgebra are the duals of the algebra operations.
Dual means turning the arrows. For instance, the dual of
the above unit E, the counit ε, will be a formal operation
given by

ε : A → Q ,

ε[qe] := q , ε[X] := 0 ∀X 6= e , X ∈ A .

Now comes a physically significant ingredient of our coal-
gebra, the coproduct ∆. A product was the assignment of
one element to sums of pairs of other elements. Hence, a
coproduct will be the splitting of one element into sums
of pairs of other elements, in symbols

∆ : A → A ⊗ A .

The philosophy is that ∆ provides the splitting of a 1PI-
graph Γ into a formal sum of tensor products of all pos-
sible divergent subgraphs γi (left factor) by the fraction
Γ/γi obtained by reducing γi to a hole (right factor). The
left factors are, moreover, treated by the R-operation.

Let us formalize this idea. The graph Γ is represented
by a PW X describing its forest structure. Let {Xi} be a
subset of PSWs of X in the sense of Sect. 2. We are going
to define the fraction X/

∏
i Xi. If

∏
i Xi = X we define

X/X = e. Otherwise we label the rows of X. Each row of
Xi is a substring of one determined row of X. We give to
the Xi-rows the labels of the X-rows they are contained
in. These labels could be ambiguous but we fix one choice
for all subwords of X. We delete from X and all Xi all
but those rows whose labels occur in each of the chosen
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PSWs Xi. Let the results be X ′ and X ′
i. If there remains

no row at all or if X ′
i ∩ X ′

j 6= ∅ for some pair {X ′
i, X

′
j}

then we put X/
∏

i Xi = ∅. Otherwise X/
∏

Xi is given
by removing all X ′

i from X ′.
Now, the coproduct of a PW X containing the PSWs

X1, . . . Xn is defined by

∆[e] := e ⊗ e ,

∆[X] := e ⊗ X +
∑
T

{ ∏
i∈T

R[X ′
i] ⊗ X/

∏
i∈T

Xi

}
, (19)

where the sum runs over all ordered subsets T = {i1, . . . ,
ik} ⊂ {1, 2, . . . , n}, i1 < i2 < . . . < ik. The order of the
factors and products is not important in this definition,
but we must avoid taking identical terms several times. In
the sequel we will omit the primes on X ′

i which indicate
the truncation to the common rows.

Our algebra A also contains elements of the type R[X],
where X is a PW. Kreimer gives two possible definitions
for ∆ ◦ R,

∆[R[X]] = ∆[X] , (20a)
∆[R[X]] = (id ⊗ R)′ ◦ ∆[X] , (20b)

where the prime means that R[e] is replaced by e. Kreimer
chooses to work with (20a). This choice violates coassocia-
tivity, but non-coassociativity is interesting from a num-
ber theoretical point of view [5]. We prefer (20b), because
R[X] is always a local counterterm • . The philosophy
is that ∆ splits a graph into subgraphs and reminders.
Hence, both of them should be local counterterms in this
example, ∆[•] =

∑ •⊗•, and for us the natural definition
is (20b) or

∆[R[X]]:=e ⊗ R[X]

+
∑
T

{ ∏
i∈T

R[Xi] ⊗ R[X/
∏
i∈T

Xi]′
}

. (21)

Again, the prime means that R[X/X] has to be replaced
by e instead of R[e]. This can be easily interpreted in
terms of PSWs. The PSWs Xi of R[X] are identical with
the PSWs of X, except for the total PW R[X]. The frac-
tion R[X]/

∏
i Xi obtained by removing the PSWs Xi

in R[X] clearly coincides with R[X/
∏

i Xi], except for
R[X]/R[X] = e.

There are of course some consistency conditions to ful-
fill before we can call A a coalgebra. One of these condi-
tions to ∆ is coassociativity, which is derived from asso-
ciativity by turning the arrows: If we split one element
into a sum of pairs, it must be the same to split the left or
the right factor further. In symbols, coassociativity means

(id ⊗ ∆) ◦ ∆[X] = (∆ ⊗ id) ◦ ∆[X] , ∀ X ∈ A . (22)

We give the proof in proposition 1 in the appendix. For
the choice (20a), coassociativity was only satisfied under
the additional condition (18), but also with (20b) we need
(18) to get a true Hopf algebra, see below.

The ‘counit’ ε is only a left counit and becomes a
true counit under the condition (18). Recall that an el-
ement of A is a formal linear combination of products
X =

∏
i Xi

∏
j R[Yj ], where Xi, Yj are iPWs. We have

for X 6= e

∆[X] =
∏

i

R[Xi]
∏
j

R[Yj ] ⊗ e

+ e ⊗
∏

i

Xi

∏
j

R[Yj ] +
∑

Z ⊗ Z ′ ,

where Z, Z ′ stand for terms which do not contain the unit
e and which are annihilated by ε. Hence, the counit axioms
read

(ε ⊗ id)◦∆[X] =
∏

i

Xi

∏
j

R[Yj ] = X , (23a)

(id ⊗ ε)◦∆[X] =
∏

i

R[Xi]
∏
j

R[Yj ] ≈ R[X]∼X. (23b)

In the last line we need (18) to obtain equivalence with
X. Moreover, the ‘antipode’ S defined below turns out to
require (18) to be a true antipode.

So far we have equipped A with the structures of an
algebra and a coalgebra. Both merge to a bialgebra if ∆
is an algebra homomorphism,

∆◦m[X⊗Y ] = (m⊗m)◦(id⊗τ ⊗id)[∆[X]⊗∆[Y ]] . (24)

Here, τ [X ⊗ Y ] := Y ⊗ X denotes the flip operation. It is
evident that (24) is fulfilled, because the subwords of XY
are the subwords Xi of X and Yi of Y together.

The last step extends the bialgebra to a Hopf algebra.
On a Hopf algebra there exists the additional structure of
an antipode S : A → A, which is the dual of the inverse
in an algebra. Our algebra does not have an inverse (ex-
cept for e−1 = e), nevertheless it has (under the condition
(18)) an antipode, which will provide the link to the forest
formula:

S[e] = e , (25a)
S[XY ] = S[Y ]S[X] , ∀X, Y ∈ A , (25b)

S[X] = −X − m ◦ (id ⊗ S) ◦ P2 ◦ ∆[X] ,

∀ iPW X ∈ A , (25c)
S[R[X]] = −R[X + m ◦ (S ⊗ id) ◦ P2 ◦ ∆[X]] ,

∀ iPW X ∈ A , (25d)

where P2 = (id − E ◦ ε) ⊗ (id − E ◦ ε). The antipode
is by (25a) recursively defined, because in P2 ◦ ∆[X] only
smaller words than X survive, and for primitive words (x)
we simply have S[(x)] = −(x) and S[R[(x)]] = −R[(x)].
We show in proposition 2 that of the four axioms on S
to check, only one is fulfilled in general renormalization
schemes, the other three require (18):

m ◦ (S ⊗ id) ◦ ∆[X] ∼ E ◦ ε[X] , (26a)
m ◦ (id ⊗ S) ◦ ∆[X] ≈ E ◦ ε[X] , (26b)
m ◦ (S ⊗ id) ◦ ∆[R[X]] ≈ E ◦ ε[R[X]]

≈ m ◦ (id ⊗ S) ◦ ∆[R[X]] . (26c)
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Formula (26a) relies deeply on the fact that for X being
an iPW, the equation

m ◦ (S ⊗ id) ◦ ∆[X]

= (id−R)
[
X +

∑
T

{
m

[ ∏
i∈T

(−R[X̄i]) ⊗ X/
∏
i∈T

Xi

]}]

= (id−R)[X̄] , (27a)

R[X̄i] := −S[R[Xi]] ,

reproduces Bogoliubov’s recurrence formula of renormal-
ization [10]. Here, Xi 6= X, i = 1, . . . , n, are the proper
PSWs of X. Denoting by Xij 6= Xi, j = 1, . . . ni, the
proper PSW of Xi, we can write

R[X̄i] ≡ −S[R[Xi]]
= R[Xi + m ◦ (S ⊗ id) ◦ P2 ◦ ∆[Xi]] (27b)

= R
[
Xi +

∑
Ti

{
m

[ ∏
j∈Ti

S[R[Xij ]] ⊗ Xi/
∏
j∈Ti

Xij

]}]
.

Thus, X̄i has the same structure as X̄, and we obtain in-
deed a recurrence formula. The integrand X̄ associated to
an integrand X is pre-finite, which means that all sub-
divergences are compensated. The remaining superficial
divergence is compensated by id−R.

To identify (27a) with Bogoliubov’s recurrence formula
it is important that the coproduct produces all combi-
nations of disjoint subdivergences, which are encoded in
the set of maximal forests. This means that in describing
a Feynman graph Γ with subdivergences by a parenthe-
sized word X, we must somehow include in X all maximal
forests of Γ . That is why we have written the maximal
forests as lines of X. The maximal forests are defined by
the relative position of the subdivergences. Each time we
meet an overlap of subdivergences we have a branching
of forests. Having defined the forests we must say how to
detect the disjoint subdivergences. Forests contain by def-
inition no overlapping divergences, so the only problem
is to avoid nested divergences. This was achieved by our
factorization procedure X/

∏
i∈T Xi, which yields zero if

the Xi intersect. By variation of T (which must be an or-
dered set to avoid the multiplicities) we get all products
of disjoint subdivergences. It is important that if a subdi-
vergence occurs in two or more forests, we must count it
only once. That is why we have introduced the brackets
connecting identical regions in various maximal forests.

In conclusion, our modified definition of a parenthe-
sized word that keeps track of different maximal forests
and connects simultaneously shrinkable boxes is the cor-
rect language for Bogoliubov’s recurrence formula [10].
This formula has an explicit solution, Zimmermann’s for-
est formula [7]. Both are reproduced by coproduct and
antipode of a (quasi-) Hopf algebra via m ◦ (S ⊗ id) ◦ ∆.
We remark that the crucial formula (26a) is actually a
stronger equivalence '. Due to the forest formula (27a),
the difference between left and right hand sides is finite in
any renormalization scheme.

6 The primitivator P and the relation
to the Hopf algebra of Kreimer

Having worked out a Hopf algebra of Feynman graphs
where overlapping divergences are treated on the same
footing as disjoint and nested ones, we must also say what
the precise relation is to Kreimer’s formulation [1] where
overlapping divergences are resolved before building the
Hopf algebra. Our presentation is inspired by an idea of
Dirk Kreimer. A detailed discussion of these questions
based on set-theoretical considerations was given in [4],
some remarks can be found in the appendix of [2].

The connection to Kreimer’s Hopf algebra is achieved
by introduction of a “primitivator” P which maps over-
lapping divergences to primitive elements. Let X be an
iPW with proper PSWs Xi 6= X, i = 1, . . . , n, and T ⊂
{1, . . . , n}. Let us write the outermost parentheses of iPWs
explicitly, i.e. (X) instead of X and (Xi) instead of Xi

and (P[X/
∏

i∈T Xi]) instead of P[X/
∏

i∈T Xi]. With this
convention we define

P[(X)] := (X) −
∑
T

( ∏
i∈T

(Xi) P[
X/

∏
i∈T

Xi

])
. (28)

We are going to prove that P[(X)] is primitive in the fol-
lowing sense:

∆[P[(X)]] = e ⊗ P[(X)] + R[P[(X)]] ⊗ e . (29)

If (X) is primitive it contains no PSWs. Hence we have
T = ∅ and P[(X)] = (X). For (X) and (Y ) being prim-
itive we compute P[((Y )X)] = ((Y )X) − ((Y )X) = 0.
By induction it is easy to show that P[Y ] = 0 for any
non-primitive one-line iPW Y . To prove (29) by induc-
tion we assume that all (P[

X/
∏

i∈T Xi

]
) are primitive in

the sense (29). Hence the only PSWs of
( ∏

i∈T (Xi)P[
X/∏

i∈T Xi

])
are the (Xi) and their subwords (Xki

), with

ki ∈ T i ⊂ {1, . . . ni}. We compute

∆[P[(X)]] = e ⊗ (X) + R[(X)] ⊗ e

+
∑
T

∏
i∈T

R[(Xi)] ⊗ (X/
∏
i∈T

Xi)

−
∑
T

{
e ⊗

( ∏
i∈T

(Xi) P[
X/

∏
i∈T

Xi

])

+R
[( ∏

i∈T

(Xi) P[
X/

∏
i∈T

Xi

])]
⊗ e

+
∏
i∈T

R[(Xi)] ⊗ (P[
X/

∏
i∈T

Xi

])}
(30)

−
∑

T1,T2,T3,
⋃

m∈T2
T m

{ ∏
i∈T3

R[(Xi)]
∏

m∈T2

{∏
km∈T m

R[(Xkm)]
}

⊗

⊗
( ∏

l∈T1

(Xl)
∏

m∈T2

(Xm/
∏

km∈T m

Xkm) P[
X/

∏
j∈T1⊕T2⊕T3

Xj

])}
.

In the last (splitted) line we have T1 ⊕ T2 6= ∅ because
that contribution has been written explicitly in the line
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before. Comparison of (A.6) with (A.4) in the appendix
shows that the last (splitted) line of (30) equals

−
∑
T,T ′

{ ∏
i∈T

R[(Xi)] ⊗

⊗
( ∏

j∈T ′

({
X/

∏
i∈T

Xi

}
j

) P[{
X/

∏
i∈T

Xi

}
/
{
X/

∏
i∈T

Xi

}
j

])}
,

where
{
X/

∏
i∈T Xi

}
j

, j ∈ T ′, are the PSWs of (X/∏
i∈T Xi). Using the definition (28) for (X) and (X/∏
i∈T Xi) we confirm (29).
This means that we may replace the overlapping diver-

gence (X) by the linear combination P[(X)]+∑
T

( ∏
i∈T (Xi)P

[
X/

∏
i∈T Xi

])
. If (X) is an overlapping

divergence which contains no overlapping subdivergences,
all Xi are one-line PWs (or connected identical rows of
one-line PWs X̃i ; in that case we replace Xi by X̃i) .
Since the P[(X)] form additional primitive (i.e. one-line)
elements of the Hopf algebra, we have written the multi-
line overlapping divergence (X) as a linear combination
of one-line PWs. In other words, our Hopf algebra is iso-
morphic to a Hopf algebra of one-line PWs, and this is
precisely Kreimer’s original Hopf algebra. The primitive
elements of Kreimer’s Hopf algebra are the graphically
primitive elements and from each overlapping divergence a
computational-primitive element. Our approach provides
an explicit construction of the latter. The same can be
achieved, for instance, by Schwinger-Dyson techniques [1,
5] or set-theoretical considerations [4].

The advantage of Kreimer’s Hopf algebra of one-line
PWs is that it can be reformulated as a Hopf algebra of
rooted trees [2]. A subalgebra thereof turns out to be the
dual of the diffeomorphism group of a manifold. It is now
interesting to ask [2] for the (noncommutative) manifold
whose diffeomorphism group is the dual of the Hopf alge-
bra of renormalization. We feel that answering this ques-
tion is indispensable for a true understanding of renormal-
ization and of the short-distance structure of spacetime.

7 Two examples for the coproduct
and the forest formula

We compute here the coproducts and forest formulas for
two striking examples of Sect. 3. By PSW we shall always
mean proper PSW, we write the trivial PWs explicitly.
The proper PSWs of

X = ((v1)p2)
((v2)p1)

(9)

are obviously

X1 = (v1) , X2 = (v2) . (9s)

Let us compute X/X1. The only row of X1 can only be
related to the upper row of X so that X ′ = ((v1)p2). To

obtain X/X1 we must remove X1 from X ′, the result is
X/X1 = (p2). Accordingly,

X/X1 = (p2) , X/X2 = (p1) , X/(X1X2) = 0 . (9r)

The last equation holds because X1, X2 have no common
row label. Therefore, the coproduct reads

∆[X] = e ⊗ ((v1)p2)
((v2)p1)

+ R

[
((v1)p2)
((v2)p1)

]
⊗ e

+ R[(v1)] ⊗ (p2) + R[(v2)] ⊗ (p1) . (9∆)

Let us now apply the operator m ◦ (S ⊗ id). To avoid
unnecessary calculation we use the general result (27a),

m ◦ (S ⊗ id) ◦ ∆[X]
= (id − R)[X + m ◦ (S ⊗ id) ◦ P2 ◦ ∆[X]] .

The projection P2 removes all terms containing the unit
e so that in the case under consideration we have P2 ◦
∆[X]] = R[(v1)] ⊗ (p2) + R[(v2)] ⊗ (p1). This gives

m ◦ (S ⊗ id) ◦ ∆[X]

= (id − R)
[
((v1)p2)
((v2)p1)

+ S[R[(v1)]](p2) + S[R[(v2)]](p1)
]

= (id − R)
[
((v1)p2)
((v2)p1)

− R[(v1)](p2) − R[(v2)](p1)
]

. (9f)

The primitivator of X reads

o1 := P[X] = ((v1)p2)
((v2)p1)

− ((v1)p2) − ((v2)p1) . (9p)

It is easy to verify ∆[o1] = R[o1] ⊗ e + e ⊗ o1.
Let us repeat the same steps for example (11):

X = (((v3) v13)p2)
(((v3) v23)p1)

, (11)

X1 = (v3)
(v3)

, X2 = ((v3)v13) , X3 = ((v3)v23) , (11s)

X/X1 = ((v13)p2)
((v23)p1)

, X/X2 = (p2) , X/X3 = (p1) ,

X/(X1X2) = X/(X1X3) = X/(X2X3) = 0 ,

X/(X1X2X3) = 0 , (11r)

∆[X] = e ⊗ (((v3) v13)p2)
(((v3) v23)p1)

+ R

[
(((v3) v13)p2)
(((v3) v23)p1)

]
⊗ e

+ R[(v3)] ⊗ ((v13)p2)
((v23)p1)

+ R[((v3)v13)] ⊗ (p2) + R[((v3)v23)] ⊗ (p1) , (11∆)
(
in the third term, (v3)

(v3)
can be condensed to (v3)

)

m ◦ (S ⊗ id) ⊗ ∆[X]

= (id − R)
[
(((v3) v13)p2)
(((v3) v23)p1)

+ S[R[(v3)]]
((v13)p2)
((v23)p1)
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+ S
[
R

[
((v3)v13)

]]
(p2) + S

[
R

[
((v3)v23)

]]
(p1)

]

= (id − R)
[
(((v3) v13)p2)
(((v3) v23)p1)

− R[(v3)]
((v13)p2)
((v23)p1)

−
{

R[((v3)v13)]

+ R
[
m ◦ (S ⊗ id) ◦ P2∆[((v3)v13)]

]}
(p2)

−
{

R[((v3)v23)]

+ R
[
m ◦ (S ⊗ id) ◦ P2∆[((v3)v23)]

]}
(p1)

]

= (id − R)
[
(((v3) v13)p2)
(((v3) v23)p1)

− R[(v3)]
(v13)p2)
(v23)p1)

− R[((v3)v13)](p2) + R
[
R[(v3)](v13)

]
(p2)

− R[((v3)v23)](p1) + R
[
R[(v3)](v23)

]
(p1)

]
, (11f)

o2 := P[X] = (((v3) v13)p2)
(((v3) v23)p1)

− ((v3)o1)

− (((v3)v13)p2) − (((v3)v23)p1) . (11p)

The primitive element o1 computed in (9p) enters the de-
composition of X into one-line PWs.

Example (12) is similar to (11) and is left as an exercise
to the reader. Example (13) is the obvious generalization
of (9) to three maximal forests.
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Appendix
Verification of the Hopf algebra properties

Proposition 1 The coproduct ∆ is coassociative, i.e.
(∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆.

Proof. Let X be an iPW which is not R[X ′]. Let Xi 6=
X, i = 1, . . . , n, be the proper PSW of X. Let T be the
set of all ordered subsets of {1, 2, . . . , n}. We write the
contribution of the trivial PSW X of X explicitly:

∆[X] = e⊗X + R[X]⊗e +
∑
T

{∏
i∈T

R[Xi] ⊗ X/
∏
i∈T

Xi

}
.

This gives

(id ⊗ ∆) ◦ ∆[X] (A.1)

= e ⊗
{

e ⊗ X + R[X] ⊗ e +
∑
T

{∏
i∈T

R[Xi] ⊗ X/
∏
i∈T

Xi

}}

+ R[X] ⊗ e ⊗ e

+
∑
T

{ ∏
i∈T

R[Xi] ⊗ e ⊗ X/
∏
i∈T

Xi

}

+
∑
T

{ ∏
i∈T

R[Xi] ⊗ R[X/
∏
i∈T

Xi] ⊗ e
}

+
∑
T

{∏
i∈T

R[Xi] ⊗
∑
T ′

{ ∏
j∈T ′

R
[{

X/
∏
i∈T

Xi

}
j

] ⊗

⊗{
X/

∏
i∈T

Xi

}
/

∏
j∈T ′

{
X/

∏
i∈T

Xi

}
j

}}
,

where
{
X/

∏
i∈T Xi

}
j
are the proper PSW of X/

∏
i∈T Xi,

j = 1, . . . , n′ < n, and T ′ is the set of all ordered subsets
of {1, . . . , n′}. The following terms can be rearranged:

e ⊗ e ⊗ X +
{
e ⊗ R[X] ⊗ e + R[X] ⊗ e ⊗ e

+
∑
T

{ ∏
i∈T

R[Xi] ⊗ R[X/
∏
i∈T

Xi]
}

⊗ e
}

= (∆ ⊗ id)(e ⊗ X + R[X] ⊗ e) (A.2)

so that there remain
∑
T

{∏
i∈T

R[Xi] ⊗ e ⊗ X/
∏
i∈T

Xi

}

+ e ⊗
∑
T

{∏
i∈T

R[Xi] ⊗ X/
∏
i∈T

Xi

}
and(A.3)

∑
T,T ′

{∏
i∈T

R[Xi] ⊗
{ ∏

j∈T ′
R

[{
X/

∏
i∈T

Xi

}
j

] ⊗

⊗ {
X/

∏
i∈T

Xi

}
/

∏
j∈T ′

{
X/

∏
i∈T

Xi

}
j

}}
. (A.4)

We investigate
{
X/

∏
i∈T Xi

}
j
. Either this is a PSW of X

or not. If not there must exist a PSW Xm of X and some
PSWs Xk with k ∈ Tm ⊂ T such that

{
X/

∏
i∈T Xi

}
j

=
Xm/

∏
k∈T m Xk. This means that T ′ = T1 ⊕ T2 (both

T1, T2 can be empty but not the sum) and

∏
j∈T ′

R
[{

X/
∏
i∈T

Xi

}
j

]
=

∏
l∈T1

R[Xl]
∏

m∈T2

R[Xm/
∏

km∈T m

Xkm ] .

Let us assume that T2 contains at least two elements
m1, m2 and perform the factorization

{
X/

∏
i∈T

Xi

}
/
({

Xm1/
∏

k1∈T m1

Xk1

}{
Xm2/

∏
k2∈T m2

Xk2

})
. (A.5)

Recall that Tm1⊂T and Tm2⊂T and assume that Xn ∈
Tm1 ∩ Tm2 . The fraction (A.5) will only be non-zero if
Xm1/

∏
k1∈T m1 Xk1 and Xm2/

∏
k2∈T m2 Xk2 occur

together and disjoint in at least one row of X/
∏

i∈T Xi.
These rows correspond to those rows of X each of which
contain all Xi, i∈T , too. But each Xi occurs precisely once
in any row, so does the Xn in question, hence it will either
occur in Tm1 or in Tm2 , but never in both. Therefore, we
have a direct sum decomposition T = T3 ⊕ ⊕

m∈T2
Tm
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and (A.4) takes the form

(A.4) =
∑

{T1,T2,T3,
⋃

m∈T2
T m}

{ ∏
i∈T3

R[Xi]
∏

m∈T2

{
∏

km∈T m

R[Xkm ] }

⊗
∏
l∈T1

R[Xl]
∏

m∈T2

R
[
Xm/

∏
km∈T m

Xkm

]

⊗X/(
∏

m∈T2

Xm

∏
l∈T1

Xl

∏
i∈T3

Xi)
}

=
∑
T

{{ ∑
T3⊂T

∏
i∈T3

R[Xi] ⊗
∑

T1⊂T/T3

∏
l∈T1

R[Xl]
}

×
∏

m∈T2=T/(T1⊕T3)

{ ∑
T m

{ ∏
km∈T m

R[Xkm
]

⊗R[Xm/
∏

km∈T m

Xkm
]
}} ⊗ X/

∏
j∈T

Xj

}
. (A.6)

Note that T1, T2, T3 can be empty, in that case the missing
product over R[Xj ] has to be replaced by e. If T2 is empty
then the sum over T1 = T/T3 has to be omitted. Observe
that neither T1 ⊕ T2 nor T3 ⊕ T2 can be empty, but these
two terms T2 = ∅ and either T1 = ∅ or T3 = ∅ are precisely
those of (A.3). All together can be rewritten as

(A.3) + (A.4)

=
∑
T

{ ∏
j∈T

{
e ⊗ R[Xj ] + R[Xj ] ⊗ e

+
∑
T j

{∏
kj∈T j

R[Xkj
] ⊗ R[Xj/

∏
kj∈T j

Xkj
]
}} ⊗ X/

∏
j∈T

Xj

}

= (∆ ⊗ id)
[∑

T

{ ∏
j∈T

R[Xj ] ⊗ X/
∏
j∈T

Xj

}]
, (A.7)

and we conclude

(A.2) + (A.3) + (A.4) = (∆ ⊗ id) ◦ ∆[X]
= (id ⊗ ∆) ◦ ∆[X] . (A.8)

To finish the proof of coassociativity of ∆ we must
write down

(id ⊗ ∆) ◦ ∆[R[X]] = (id ⊗ ∆) ◦ (id ⊗ R′) ◦ ∆[X]
= (id ⊗ id ⊗ R′) ◦ (id ⊗ ∆) ◦ ∆[X]
= (id ⊗ id ⊗ R′) ◦ (∆ ⊗ id) ◦ ∆[X]
= (∆ ⊗ id) ◦ ∆[R[X]] ,

(id ⊗ ∆) ◦ ∆[XY ]
= m̂

[{(id ⊗ ∆) ◦ ∆[X]} ⊗ {(id ⊗ ∆) ◦ ∆[Y ]}]
= m̂

[{(∆ ⊗ id) ◦ ∆[X]} ⊗ {(∆ ⊗ id) ◦ ∆[Y ]}]
= (∆ ⊗ id) ◦ ∆[XY ] .

We have defined m̂[{X ′⊗X ′′⊗X ′′′} ⊗ {Y ′⊗Y ′′⊗Y ′′′}] :=
X ′Y ′ ⊗ X ′′Y ′′ ⊗ X ′′′Y ′′′ as well as R′[e] = e and R′[X] =
R[X] for X 6= e. ut
Proposition 2 The ‘antipode’ S fulfills m◦(S⊗ id)◦∆ ≈
E ◦ ε ≈ m ◦ (id ⊗ S) ◦ ∆, and on PWs X not containing
R we even have m ◦ (S ⊗ id) ◦ ∆[X] ∼ 0 = E ◦ ε[X].

Proof. The case X = e is trivial. Let X 6= e be an iPW,
which is not R[X ′]:

m ◦ (S ⊗ id) ◦ ∆[X]
= m ◦ (S ⊗ id)[e ⊗ X + R[X] ⊗ e + P2∆[X]]
= X + S[R[X]] + m ◦ (S ⊗ id) ◦ P2∆[X]
= X − R

[
X + m ◦ (S ⊗ id) ◦ P2∆[X]

]
+ m ◦ (S ⊗ id) ◦ P2∆[X]

= (id − R)
[
X + m ◦ (S ⊗ id) ◦ P2∆[X]

]
∼ 0 = E ◦ ε[X] ,

m ◦ (id ⊗ S) ◦ ∆[X]
= m ◦ (id ⊗ S)[e ⊗ X + R[X] ⊗ e + P2∆[X]]
= S[X] + R[X] + m ◦ (id ⊗ S) ◦ P2∆[X]
= −(X + m ◦ (id ⊗ S) ◦ P2∆[X]) + R[X]

+ m ◦ (id ⊗ S) ◦ P2∆[X]
= −(id − R)[X] ∼ 0 = E ◦ ε[X] .

As we have chosen (20b), we must also compute (X is
again an iPW)

m ◦ (S ⊗ id) ◦ ∆[R[X]]
= m ◦ (S ⊗ id)[e ⊗ R[X] + R[X] ⊗ e + P2∆[R[X]]]
= R[X] + S[R[X]] + m ◦ (S ⊗ id) ◦ P2∆[R[X]]
= R[X] − R

[
X + m ◦ (S ⊗ id) ◦ P2∆[X]

]
+ m ◦ (S ⊗ id) ◦ P2∆[R[X]]

=
(
m ◦ (id ⊗ R) − R ◦ m

)[
(S ⊗ id) ◦ P2∆[X]

]
≈ 0 = E ◦ ε[R[X]] .

We need condition (18) in the form R ◦ m = R ◦ m ◦
(id ⊗ R) to have equivalence. The remaining case is more
complicated:

m ◦ (id ⊗ S) ◦ ∆[R[X]]
= S[R[X]] + R[X] + m ◦ (id ⊗ S) ◦ P2∆[R[X]]
= −R

[
X + m ◦ (S ⊗ id) ◦ P2∆[X]

]
+ R[X]

+ m ◦ (id ⊗ S) ◦ P2∆[R[X]]
= m ◦ (id ⊗ S) ◦ P2∆[R[X]]

− R
[
m ◦ (S ⊗ id) ◦ P2∆[X]

]
. (A.9)

We transform the first term, using the definition of S act-
ing on R[ . ]:

m ◦ (id ⊗ S) ◦ P2∆[R[X]] (A.10)
= −m[P2∆[R[X]]]
− m ◦ (id ⊗ {R ◦ m ◦ (S ⊗ id) ◦ P2∆}) ◦ P2∆[X]
=

(
R ◦ m − m ◦ (id ⊗ R)

)◦(
P2∆[X]

+ (id ⊗ {m ◦ (S ⊗ id) ◦ P2∆}) ◦ P2∆[X]
)

− R
[
m[P2∆[X]]

+ m ◦ (id ⊗ m) ◦ (id ⊗ S ⊗ id) ◦ (id ⊗ P2∆) ◦ P2∆[X]
]
.

Now observe that due to coassociativity of ∆ we have

(id ⊗ P2∆) ◦ P2∆[X] = P3 ◦ (id ⊗ ∆) ◦ ∆[X]
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= P3 ◦ (∆ ⊗ id) ◦ ∆[X]
= (P2 ⊗ id) ◦ (∆ ⊗ id) ◦ P2∆[X] ,

with P3 = (id−E ◦ ε)⊗ (id−E ◦ ε)⊗ (id−E ◦ ε). Note that
∆ is multiplicative, not (P2∆). Using also associativity of
m we can write

− R
[
m◦(id ⊗ m)◦(id ⊗ S ⊗ id)◦(id ⊗ P2∆)◦P2∆[X]

]
= −R

[
m ◦ (m ⊗ id) ◦ (id ⊗ S ⊗ id) ◦

◦(P2 ⊗ id) ◦ (∆ ⊗ id) ◦ P2∆[X]
]

.

We have computed (∆⊗ id)◦P2∆[X] in (A.7). By inspec-
tion of that formula we find that (P2⊗id)◦(∆⊗id)◦P2∆[X]
equals (∆ ⊗ id) ◦ P2∆[X]−(A.3), which gives

−R
[
m ◦ (id ⊗ m) ◦ (id ⊗ S ⊗ id) ◦ (id ⊗ P2∆) ◦ P2∆[X]

]
= −R

[ ∑
T

m
[ ∏

j∈T

{
m ◦ (id ⊗ S) ◦ ∆[R[Xj ]]

} ⊗
⊗X/

∏
j∈T

Xj

]]

+ R
[ ∑

T

m
[∏

j∈T

S[[R[Xj ]]] ⊗ X/
∏
j∈T

Xj

]]

+ R
[ ∑

T

m
[∏

j∈T

[R[Xj ]] ⊗ X/
∏
j∈T

Xj

]]
.

The last term cancels −R[m[P2∆[X]]] in (A.10) and the
middle term cancels −R[m ◦ (S ⊗ id) ◦ P2∆[X]] in (A.9).
We end up with the same problem as before, to calculate
m◦(id⊗S)◦∆[R[Xi]], however, these Xi are smaller than
the original X. This leads to an iteration which stops if
Xi is primitive, and for primitive Xi we have

m ◦ (id ⊗ S) ◦ ∆[R[Xi]] = S[R[Xi]] + R[Xi] = 0 .

The conclusion is that it is condition (18) required in
(A.10) which separates us from zero: m◦(id⊗S)◦∆[R[X]]
≈ 0 = E ◦ ε[R[X]] for all iPW X.

It remains to apply m ◦ (id ⊗ S) ◦ ∆ and m ◦ (S ⊗
id) ◦ ∆ to products X =

∏
i Xi

∏
j R[Yj ]. Here we have

the multiplicativity of ∆ (24) and S (25b) at disposal, so
we clearly get

m ◦ (id ⊗ S) ◦ ∆[X] ≈ 0 = E ◦ ε[X]
≈ m ◦ (S ⊗ id) ◦ ∆[X] . (A.11)

One case however is special. For X =
∏

Xi, where none
of the Xi is R[X ′

i], we have

m ◦ (S ⊗ id) ◦ ∆[
∏

i

Xi]

=
∏

i

{
(id − R)

[
Xi + m ◦ (S ⊗ id) ◦ P2∆[Xi]

]}

∼ 0 = E ◦ ε[
∏

i

Xi] . (A.12)

The reason is that (id−R)
[
Xi +m◦ (S ⊗ id)◦P2∆[Xi]

]
is

convergent as it reproduces the forest formula, see (27a).
Now, multiplication of (id−R)

[
Xi+m◦(S⊗id)◦P2∆[Xi]

]
by a convergent term is equivalent to zero. It is even
strongly equivalent (') to zero which means that the inte-
gral is finite. On the other hand, m◦ (id⊗S)◦∆[

∏
i Xi] =∏

i

{
(R − id)[Xi]

}
is a product of divergent terms, so we

need (18) in this case to obtain equivalence to zero. The
fact that m◦(S⊗id)◦∆ gives the forest formula is essential
for (A.12) holding in any renormalization scheme.
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